6,831 research outputs found

    Determination of absorption length of CO2 and high power diode laser radiation for ordinary Portland cement

    Get PDF
    The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for the ordinary Portland cement (OPC) surface of concrete have been determined. By employing Beer-Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 470±22 μm and 177±15 μm respectively

    Supercritical fluid coating of API on excipient enhances drug release

    Get PDF
    A process to coat particles of active pharmaceutical ingredient (API) onto microcrystalline cellulose (MCC) excipient shows promise as a new way to dosage forms showing enhanced drug release. The process consists of a fluidized bed operated at elevated pressure in which API particles are precipitated from a Supercritical Anti-Solvent process (SAS). MCC particles were used as an excipient in the fluidized bed and collect the SAS-generated API particles. Naringin was selected as the model API to coat onto MCC. A number of operational parameters of the process were investigated: fluidization velocity, coating pressure, temperature, concentration of drug solution, drug solution flow rate, drug mass, organic solvent, MCC mass and size and CO2-to-organic solution ratio. SEM and SPM analyses showed that the MCC particle surfaces were covered with near-spherical nanoparticles with a diameter of approximately 100–200 nm, substantially smaller than the as-received API material. XRD showed that naringin changed from crystalline to amorphous during processing. The coated particles resulting from the SAS fluidized bed process have a higher loading of API, gave faster release rates and higher release ratios in comparison with those produced using a conventional fluidized bed coating process. The approach could be transferred to other industries where release is important such as agrochemical, cosmetic and food

    Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection

    Get PDF
    We theoretically investigate the phase sensitivity with parity detection on an SU(1,1) interferometer with a coherent state combined with a squeezed vacuum state. This interferometer is formed with two parametric amplifiers for beam splitting and recombination instead of beam splitters. We show that the sensitivity of estimation phase approaches Heisenberg limit and give the corresponding optimal condition. Moreover, we derive the quantum Cram\'er-Rao bound of the SU(1,1) interferometer.Comment: 9 pages, 2 figures, 3 table

    A 10-Watt X-Band Grid Oscillator

    Get PDF
    A 100-transistor MESFET grid oscillator has been fabricated that generates an effective radiated power of 660 W at 9.8 GHz and has a directivity of 18.0 dB. This corresponds to a total radiated power of 10.3 W, or 103 mW per device. This is the largest recorded output power for a grid oscillator. The grid drain-source bias voltage is 7.4 V and the total drain current for the grid is 6.0 A, resulting in an overall dc-to-rf efficiency of 23%. The pattern of the SSB noise-to-carrier ratio was measured and found to be essentially independent of the radiation angle. The average SSB noise level was -87 dBc/Hz at an offset of 150 kHz from the carrier. An average improvement in the SSB noise-to-carrier ratio of 5 dB was measured for a 100-transistor grid compared to a 16-transistor gri

    Multi-Constraint Molecular Generation using Sparsely Labelled Training Data for Localized High-Concentration Electrolyte Diluent Screening

    Full text link
    Recently, machine learning methods have been used to propose molecules with desired properties, which is especially useful for exploring large chemical spaces efficiently. However, these methods rely on fully labelled training data, and are not practical in situations where molecules with multiple property constraints are required. There is often insufficient training data for all those properties from publicly available databases, especially when ab-initio simulation or experimental property data is also desired for training the conditional molecular generative model. In this work, we show how to modify a semi-supervised variational auto-encoder (SSVAE) model which only works with fully labelled and fully unlabelled molecular property training data into the ConGen model, which also works on training data that have sparsely populated labels. We evaluate ConGen's performance in generating molecules with multiple constraints when trained on a dataset combined from multiple publicly available molecule property databases, and demonstrate an example application of building the virtual chemical space for potential Lithium-ion battery localized high-concentration electrolyte (LHCE) diluents
    • …
    corecore